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[ ic yY { b b3 ( = .
A functicon f(rAB‘” ¥, Q>9A3,,?’ABJ of a vector Tin Z I, can

~

be expanded in spherical harmenics Y;%:9: ?7) of the directions of the

individual vectors. The radisl cosfficients satisfy simple differential

- i
equations which in three pravious pspers” were sclved in terms of series
, 2, 2 . ) . , ,
in r, /rj ; these were different in variocus regicns depending on the

relative magnitudes of the T, In this paper the sclutions are found

{#]

as multiple integrals over the product of Legendre polyncmials and of

a function G( W ) where W depends linearly on the r, - The
kernel G(W ) 1is irdependent of the number of condituent vectors,
their relative sizes and the orders c¢f their harmonics; it contains the
Heaviside step function H(W ) as a factor which takes care cof the
various regions. The precise form of G <can be found from £ and L
by an integral equation which fcr L = ¢ |1 is solved for arbitrary

f , and for L > 1 for sufficiently large positive powers. The
explicit expressions of Miileur, Twerdochlilb and Hirschfelder for the
angle average can be obtained simply by repeated integration of G(ar )
or directly from the differential equations. For the inverse distance
between two poirts G{ar ) bescomes Dirac’'s delta function; the number
of integrations is thereby reduced by ons. Possible applications of
the new approach to the evsluation of molecular many-center integrals
are outlined. Some corrections are given for the results of the pre-

vious papers in the series.
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I. Introduction

In a series of three papers1 the writer has presented a number of

expansions for a function of the distance r between two points Q1

12
and Q2 , which are specified by I (rl, 9‘ s f)’) and I, (rz, 9«2 ,fz )
about a common origin O or two distinct origins Ul and Oz 5

the directions of the polar axes and of the planes defining ? =0
are parallel throughout (cf. Figure 1). The dependence on each angle,
including 93 and fg where I3 (r3 = a,éﬁ ,7& ) is the vector

0, 02 , is given by surface spherical harmonics, expressed either

in their unnormalized
QL C,?) = £ Q (Cn19) (la)

or normalized forms
(e e-m)' 7
2L+ m (mep o "
>/ CB ) -4 (Z-«-m). ¢ Iz (ang))(lb)

m
where the associated Legendre functions ?e 6“5 are defined by the

standard Rodrigues formula,

*)”/2' o \{#m

/Pz (W) ==Y 2 . ) (u-l) -

The expansion for a function

\'/_; Ll-:-ﬁ = ( 4 +’V‘\

y (2a)



and more particularly for an isotrople function

V= {(re)

can always be written as

v
/ = |

{m
-~ A~

1]

f(lfu“‘fz -h--“’f),l (2b)

0,0, 0125 L m;1). o

£

0N e—
—

Here the wvectors { , ™ &nd x derncte the sets of )/ values
-~ -~y A

( ., m, and r, respectively: they are not geometric vectors in the 3-

i* i

dimensional space such as Tag o The summaticn in (3) in general is to
~ A

be taken over each /]. from 0 t, oo and each w, from -'{i to {i .

The only case: hitherty cornsidered in detuil have been Y =2 and y =3
which are relevant for the one-center and two-center expansions respect-
ively.

The basis of the theory developed in I-II1 was that since v/

depends on each ¢ i only through the linear combination 2 X, the

’

derivatives 2 /3 xi are the same for all i and correspondingly for

3/ y, and 3/311 . In particular

V=7 - 7Y @

4

which when subnstiteted in (3% gislds for 2ach individual R ( mer)
-\ -~

-

(3% /a0 LUV) R = iowaant (ie12 .,




By solving (5) together with the appropriate boundary conditions for

N N M/
V:TAB aw ol V: 7;13 _QL («9“3/7&3) (6a,b)

the writer was able to derive explicit expressions for R 1in terms of
hypergeometric functions (Appell functions for VqB)S; some of the one-
center expansions for isotropic V had already been found by Chapman4
using a different approach. The explicit forms of the radial functions
differ according to the relative sizes of the r.s for y =2 there

are two regions
S‘ f¢'>l"z ) S&: 1”,~>7‘" ) (7a)

for Y=3 there are four regions as first shown by Buehler and Hirsch-

felder5

P

'S:' T, >t iy Syt ta ,

Spt P> dats S han < < e
(see Figure 2). Whereas in the case (6a) the series expressions for R
are convergent and reasonably simple in the outer regions Sl’ 82 and
S3 , the corresponding series in the overlap region S, are in general
divergent, and the only explicit series obtained in III were for integer
N = -1,0,1,2...; even these were not likely to be of great practical use,

e.g. for numerical integrations, for large {?i because of the partial

cancellation of large terms with a small algebraic sum. In the one-



center expansion of isotropic functions of the type (2b) quadratic trans-

formations applied to the hypergeometric functions led in I to expressions

for R which were symmetric in r, and r, ; some of these had already
been derived by Chapman4 and by Fontana6, but the appearance of powers
of (r1+r2) or (r12+r22) in the denominator seem§to preclude their

usefulness for most practical purposes. Fontana6 has also outlined an
approach to an analogous symmetric two-center expansion, but for reasons to be
given in a later paper, these expansions would not be absolutely con-
vergent everywhere, quite apart from the complicated analytic form they
would take.

A rather different approach to the two~center expansion has been
taken independently by Nozawa7 and Chius. Both these authors are essen-
tially concerned with the solution of the wave equation VZ'V= + k2V s
but their method can be directly applied to any function V- . They first

into r and r.,' where xr.' =0 and

12 L1 Lo L2 1%

employ the usual one-center expansion, and then similarly re-expand the

break up the vector

dependence on r in terms of r, and r, . As a result they obtain

~2 2 3
different expressions for R in three regions only
) )
5,.7“7’5 ;
) ) (8)
Syt gy >

\

S,

(there is no subdivision of Sl‘) . The regions Sl’ 32 and S

)
'I"<'f2_ ) r*3>fz )

3 of

(7b) are completely contained in their primed counterparts and the
expressions obtained are obviously pairwise identical, and in addition
the overlap region S, 1s split up between the three regions of (8).
But as the magnitude of r2' depends on the angle a323 between X,

' 1 '
and Iy the boundary between s,' on the one hand and S, ©OF S3




on the other depends on 823 ?2, (93 and f?’/and in the expansion:
(3) the variables are no longer stricitly separated as the radial coeffi-
cients R involve the angles. In consequence it is no longer possible
to use the orthogonality relations for the surface harmonics to carry
out the integration over the angles. And any attempt to extend the
validity of the expressions for the outer regions into So in such a way
that the boundaries are independent of the angles, e.g. by using the
formulas for Si whenever r, is the largest of the three vectors will
make the expansion (3) diverge as was already implicit in the work of

Carlson and Rushbrooke9 on r ; though these authors avoid any

12-
explicit mention of the overlap region, they specify in which regions
the other formulas converge, and these exclude SO . If additional
factors multiplying V enforce convergence after integration over
angles, the results obtained in S0 from formulas valid in Si are
likely to be erroneocus. For these reasons the writer considers any
expansion of the form (3) which ignores the distinct form of the radial
coefficient R in So , while not necessarily incorrect, at any rate
not very useful for most practical purposes.
Recently a new approach to the two-center expansion has been made
by Milleur, Twerdochlib and Hirschfelderlo. For an isotropic function
f (rlz) thg,obtained simple expressions for the angle average
<f7 =R ( f ; O 2 ¢ r) by explicit integration over angles. The
~

results involve the r, only as linear combinations (t ry + r, + r3) s
and the functions appearing are obtained from 5: by integration so that
the method is applicable to fractional powers and to piece~wise continuous

function§ to which the series expansions for R derived in III cannot be

applied. Two questions posed themselves immediately:



(a) Could the closed form expressions for the angle average be obtained
more simply as solutions of the differential equations (5) with the
appropriate boundary coanditions?

(b) Could the general solution of the equations (5) with arbitrary ‘f i
be given in a form which preserved the linearity in the r, ?

Both these problems were quickly resolved, and the new derivations
are presented in sections 2 and 3 respectively. It was toc much to
expect closed expressions for the solutions of (b), hence attempts in
this direction were quickly abandoned. Instead solutions were success-
fully sought in terms of an integral over a function G(W ) where %W
is a linear function of the r, . This function was found to be in-
dependent of the ei. and of the regions Si , its exact form is
determined by a Volterra-~type integral equation involving V(E) and the
Heaviside function

Hay =1 w7

Hey=0  w<l ”
the derivative of which is Dirac's delta function 5(@03 . The explicit
solution of this equation was obtained for functions V given by (2b)

or (6), in the latter case only for sufficiently large N .

The intervention of the factor H(AJ ) automatically takes cdre of
the different analytic forms of the integrals in the various regions; its
influence on the solution and special forms of the results are discussed
in Section 4, and in Section 5 some applications of the new approach for

the evaluation of 2, 3 and 4 center integrals are outlined,




2. The Angle Average

The formula derived by Milleur, Twerdochlib and Hirschfelderl0 for

the angle average <JC'> , i.e. for the radial coefficient R(O ,

-~

03 1),

of a spherically symmetric function f(rAB) or f(rlz) is

In S, <§> —4',”, l;{(f-HWf) ’ﬂ(’/"ﬂ‘ AT %(’V’ 7.44) (10a)
- l{‘f f+1’3]
(10b)

W (e e Ayl

where

w

%(”5‘ j v (- V) J(f"\"t"’ 5 (11)

the expressiongvalid in 82 and S3 are obtained from (10b) by permu-

tation of the indices. Substitution of this integral in (10) shows that

the lower limit of integration is immaterial in § though not in So ;

l b

in consequence a singularity of Jc(rlz) at r., = 0 will not show up

12
in (f} in the outer regions, but may crucially affect the result in
the overlap region. Thus for f(rlz) = rl?_N (1l0b) remains meaningful
for all N ,provided the lower limit in (11) is taken to be € >0 ; on
the other hand convergence of the individual terms in (l0a) requires

N > -3 . The formulas (10) and (11) have a well-defined meaning for any

function { (r12) which is integrable for all non-negative rj5 ; no

analyticity of )C need be assumed as was required in IIIL.

The expressions (l0) and (ll) were obtained by Milleur, Twerdochlib

10 ) - - -
and Hirschfelder by integrations over the geometric angles. To derive




the same results as solutions of differential equations, we must put all
the ‘ i equal to zerc in (5). Consider first the one-center case
Y= 2 and put
T:r,rt <f> (12)
For this function (5) becomes

ng/Qrf = '327/’3’22, (13)

which is d'Alembert's equation with the well-known general solution

T= j,(mr,) ’*'j;(*."“z)- (14a)

Hence <Jc> must be of the form
-1 |-
<J(> ’(r‘ f2) [ gl("r*"z\ +3’~U"'D]‘ (14b)

2
f(rl) ; hence by L'HSpital's rule

Jo() = =100 = 5900

However as r tends to zero in the region Sl R (f) tends to

(15a)

T dgy Ay - £ 159




or

j(m - /oufu jf(v) dv 16

although again the lower limit of integration is essentially arbitrary.

The angle average is thus

s, o <y = [geran) - ge-nd] @nn)”

(17a)

St <foe [ gty -glan)] @any' o

with g( ) defined in (l6); the second formula follows from the first

by symmetry. For the two-center case (y =3) we put

—
I:f"#’. ty <f> ) (18)

for which (5) becomes
: r L
VT /ant = AT %)= TT Jan? (19

Considering the three sides of this equation in pairs we see that each
. \ e b . .

r, is coupled'to the others by addition or subtraction as in (lé4a),
*

hence <« f P is of the form

AL AR AT AR s |

(20)



10

As T

3 tends to zero in Sl , (20) must tend to (l7a) and a renewed

application of L'ngitalts rule yields the solution (11) and (10b). The
formulas valid in 52 and S3 follow from‘symmetry, and (10a) can be
deduced as the only function of the form (20) which smoothly links the
known solutions in the outer regions.

Both (16), (17) and (l0), (ll) can be written in a form independent

of the region in which they apply by making use of the Heaviside function

H(W) :

= ()" 2@ g(arean) Haneon)
6

(21a)

O]+61+G

.3/%(6.1‘,1-6,}1-&63!0 H(G, 4G 14 G, fs\ (21b)

> e} S ©
g

where each 6}_ can take the values + 1 independently. The step
function thus takes care of the various regions by eliminating terms of
negativé argument; there should be no ambiguity on the boundaries of the
regions as long as g(0) or h(0) wvanish, i.e. as long as qy‘fbu\
(or its integral) is integrable at U= 0 .

{ The generalization of (l0), (1l) for the angle average of a function

(r,,) where r is composed of an arbitrary number of
AB ~AB

vectors (cf. 269 follows easily by induction

9,93f> = zl-y(ﬂ_r;\-i g C')ze; j’ (‘Z:: G; 7';3) (22a)




where

w

j, t). W j@’) Hay jy@‘h = /o jy_, (@) dv. (22b)

3. Integral Solutions for Arbitrary et.

(i) General form of the solutions.

The differential equations (5) for the radial coefficients R do
not involve the azimuthal quantum numbers m, , which can therefore
affect the solution only in the form of a constant factor; hence the
functions R can always be decomposed into two factors, one depending
on f and m only, the other on ( and r as well as on the nature

~

~

of the functions V to be expanded:

X (V) f,",:‘j'f): KH(C(/’:‘)’ R’ V,' 1”’)-(23)

~ )~

As already pointed out in II and III, this partitioning is not unique,
as any dependence on the f only may be drawn into either factor.

As mentioned in the introduction the chief aim of the present
investigation was to establish solutions of (5) involving the r, only
in linear combinations, i.e. in the form

G‘@J)-s G(T, U+t Uy +...+ 7, u,,)

(24)

summed or integrated over various values of ug . As the solution was

11
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bound to involve the rotational quantum numbers /i in some way the

most obvious trial solution was
! !
]
R vy = /,/, du, da,.-- du,
PP e,

Assuming that G{ 4w ) has a second derivative everywhere and applying

the rl-operator of (5) to the first integral in (25) only we obtain:

3: 2 2 [(l*’)fé 3! (u)aeu -

7"87“

f{; G(«:Hz“' G oy - N/” G—(s]’)(uyo(u

f G‘”@JB /’3‘(%,\ olu,

+ 0( (u, 1) 6 _ £, (4, +") Gevy 0{ d(ze)

aw.. 7, v g

where the last integral vanishes on integration by parts. The ry
operator in (5) applied to the trial function R'' of (25) yieldsv thus
a similar Y-fold integral, with G''(4J) ) replacing G( ) ; the

resulting expression is thus invariant whichever particular operator in
(5) is chosen, and (25) is indeed a solution of (5). The general nature
of G makes it likely that (25) represents the general solution of (5)

except possibly for some singular solutions. Although for the purposes

of the proof it has been assumed that G(4» ) possesses second
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derivatives everywhere, this is not a necessary condition as even a dis-
continuous G(4y ) can be treated as the limit of a sequence of functions
with second derivatives.

Having thus established the general nature of the solution of (5)

we next have to show that for the expansion of a function

V’ f('bw) ‘O‘LM (946 ) %53 7

(which includes (2b) as a special case) with a suitable choice of the
factor K'' the function G(4y ) is independent of the number of com-
ponent vectors 4 and the rotational quantum numbers {? i Once
this has been established it remains to determine the dependence of G
on ]Land L.

(ii) Invariance of G .

. . . m
The transformation properties of the spherical harmonics (Ze or

m
¢

vidual term in (3) involve the azimuthal quantum numbers m only through

Y of (1) under rotation require that the coefficients of each indi-

the integrals: (generalized Gaunt's coefficients)

|
——
—

, l

l
3
N S AN G e
43 (28)

o} mn m’-"'ma /) I
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or

(8 b d, T
,.y ", My M N % (19,50)-4‘;,90((90/70.(29)

The latter integral vanishes unless

4

ZWJ 20) (30a)

3

% li] = b= A (3009
‘:’ 2...

A- 6>0 (J 2 a) oo

Here (30b) follows from parity considerations and (30a) and (30c) from
the orthogonality relations of the spherical harmonics. The integral
:[;1 in (28) does not necessarily vanish if (30a) is violated, but
as the only integrals of importance are those for which (30a) is valid,
we assume the relation must hold. 1In view of the writers personal
preference for unnormalized harmonics, the derivation will be given in
terms of these functions; some of the formulas required in this section

are derived in Appendix A 1if their presentation here would interrupt

the flow of the argument.

If in the expansion of (27) we put for the m~dependent coefficient

K''" of R (cf. (3) and (23)):

) M2 —_— (/,_...[
(4 m) =" T4 T, (o5 o
t )




N
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the T;l is a consequence of the transformation properties, the addi-
tional factors have beer chosen for convenience. To show that with this
choice of K'' the function G ) in (24) and (25) is indeed in-

dependent of Y and 4? we note that by making r

~ 14

dependence of the integrand of (23) on u

= 0 , the only
Y is through the Legendre
polynomial; hence by orthogonality all the integrals {25) vanish, unless

[V = 0, in which case the integral is just twice that obtained with

T ) and u y missing; at the same time {31) has exactly half the value
it would have in the absence of €,+5 . Hence for the expansion (3) to

be invariant under the addition of an arbitrary number of zero vectors,
G(4 ) must be invariant under the accretion or deletion of an arbitrary

number of uj terms with Z]. =0 .

More generally we can show that the invariance of G in (25)
ensures the identity of the expansion (3) whether we take two radii
(say I and 52) in the same direction or take a single vector of

magnitude rtr, . Collecting only those factors in (3), (25) and (31)

which depend on (9’ , f’ ) —.-(,9“ le) '(l and {2 and summing

)
over these, we cbtain in the one case the contribution

ey,

-2 5 ([0, 2,70

o {4 ...
NZALZARN v

(32a)
AL M mo-m, - -My

X /I)(u\/li(u,) G—(r, U, Ty Uyt - 5 olu, olu,

e| ) 3, {
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and in the other

-3 [T ) T, (1 )

M -M--.‘m/
(32b)

x /i(u'S G—ﬁ'fﬁ—n) u‘+..u] du,

The products of two spherical harmeomics in (32a) can be expanded in the

usual way as sums of single harmonics

M, My, — o - L 41 / ' "
_al' (9)‘” ﬂlx {9’ ?),CZ(—) L (m m mi}(p’z) ﬁ, Gy
m= Cn1/ + nnﬁ. )

whereas the single integral in (32b) can be converted into a double one
with the same argument for G as in (32a) by multiplying with the

delta function

Sluu) = Z( %) By T ()

(34)

On expanding the products of Legendre functions of 8] in (32b) the

same way as in (33) we obtain as the factor of

(/‘*”i )(/i*'l{z\)(’/{‘ ’i) —0‘("‘(9/ f) (,;’ (“/)2(‘(2) G-(""> (35a)
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from (32b) and (34)

_ Lo 4\ _ (/. 4 L
! / 0o 0
— - _—)
- M e mmty / (35b)
and from (32a) and (33)
{44\ ¢ L4 4 ..
("‘> % —qn { "mmn M =4 M -m, Memo... (35c)
1

= Z T L4 Aw} ('[;/}" >:’-(";}‘ ”,f;tﬂf:(l}Sd)

a4 \-mom omem,

SZS T LA ...\ — [ [, /L
= Y M-m .. L © 0 0 (35¢)

A T N -

in view of (A3) and (A6). The expressions (32a) and (32b) are thus
identical provided G(ay ) does not depend on y or the ! .
While this is not a rigorous proof that G(4 ) must be independent of
these quantities, it makes it more than plausible. A complete proof
would have to show that the reduction for Y to Y -1 wvectors gives

identical results even when (19| ) ((l> #(19", %’) ; the writer has

been able to derive such a proof, but as it involves quite & number of

intermediary lemmas, it will be omitted here.
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If the spherical harmonics in both (3) and (27) are given in

normalized form, we obtain for the factor Kﬁ; from (1), (29) and (31)

K4, m) <" @D L[5 444,

Y M ’m' "“z“"“/ 36)

(iii) Relation of % and G .
Having established the iuvariance of G(4 ) with Yy and fﬂ ,
it is an easy matter to find the exact relation of G(aw ) to f and
L in (27).. One simply has to put ) =1, in which case only one
term in the expansion (3) survives in view of the orthogonality relations,

and the equation to be solved becomes
| P
]((v‘) = ]:' G-qu ‘L(u,) O‘M, . (37)

Here it should be noticed that r can by definition take only real
non-negative values and ‘{(r) can to some extent be chosen arbi-
trarily for r < 0 . The easiest way to achieve this is by multiplying

}- (r) by the Heaviside function H(r) ; eny ambiguities arising from
branch points of £(r) at r=0 are thereby automatically eliminated.
Correspondingly we may choose G(W ) X0 for 2 0 so that (37)
becomes

[
}@3 He) = j; GL(m\ ?L(m odw

(38)




where the suffix 1. has been added t¢ G to indicate which Legendre

polynomial enters into the transform. F¥or L = 0 we obtain

J[m Hiy = /ofG;@») (dw,/7)

with the solution

G, @) - (d/d) [+ fao ben] |

For L =1 the corresponding equation and solution are

forber = [ 6 6oy oy fin/ )

G )= w" (d/d) [wlf@«\ #@,):(,

The solutions for the transforms in (38) with L > 1 are less straight-

(39)

(40)

(41)

(42)

forward in general, and the only case discussed in the present paper is

N

19

that of a real power ﬁ(r) =r . It is obvious from (38) that GL(GJ )

must also be proportional to the same power

N
. " H
é;L (w) Cl,v @) )
where CLN is the reciprocal of the integral

! 2 Ny 2
J{ ?,_(Mu”dw' ()

-1-N

(P L\ . . N
F6¢&N—ah;f(%+aﬁ+§g)

(43)

(44)
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(cf. (3.12.23) of Ref.3). Hence we get

C = a""N\)(g‘f_M\ - (L'+N+‘) L even (45a)

W (RN-L)lNAY N )
_ (24N) N ... (L+N+D

(ZAN-LY(BaN-LY - (N=1) )

L odd (45b)

valid for

N> L -1 (45¢)

The exceptions are L =0 and L =1 for which the products in the
denominators of (45 a,b) become empty with the value unity, and hence

these formulas remain valid provided

/\/>’| L =0 (45d)

N}——Z }Lzl | (45e)

in agreement with (40) and (52). A more detailed discussion of the
solution of (38) in the general case with L > 1 will be given in a

subsequent paper.

4., Discussion of Results

The integral expressions (23)-(25) with (31) and (40), (42) or (38)

provide a general solution for the radial factors R( ! , m; r) in

-~ ~

the expansion (3) of V as defined in (2); to the writer's knowledge
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this form of the solution is completely new, apart from one special

case mentioned after (48) below. The form of the function (25) is such

that the factors R'' <can be interpreted as weighted averages of
. * )
another function G , not of T\R itself, but of its component

along a prescribed z-directicn. However, it should be borne in mind

that the quantities u; occurring in (25) do not represent physical

direction Sosines, but are simply integration variables; all the
dependence on the geometric angles is contained in the spherical
harmonics in (3). It is interesting to note that the partitioning of
R according to (23) with the object of keeping G(aJ)') invariant leads
to factors K'' , and hence R'' , which agree with the singly primed
factors derived in III (29), (34) for the two-center expansion for
L =0 and only differ from those in II (33), (37) for the one-center
expansion by the factor (}—)A+L ;5 yet the precise partitioning in II
had no stronger motivation than keeping the recurrence relations between
the R' as simple as possible.

The occurrence of the Heaviside function H{a2y ) as a factor in
G(W ) in (24), (25) and (38) means that in general the integration
is effectively carried out over only half the )/ -dimensional hypercube
-1 < uifé 1 , the domain on one side of the hyperplane A = 0 (which
passes through the origin) having zero integrand. If for a particular

index 1
t,o> 2t (46)

the surface u, = 1 1is everywhere a boundary of the integrated domain,
i
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and u, = -1 lies wholily outside ik: Thus if the first integration is

carried out over g the 1gwer limit is a function of the other uj's s
but the limits of all subsequent integrations are independently -1 and
+1 . If however none of the radii satisfies (46), no face of the cube
lies entirely on one side of the separating plane, and the upper limit
of the first integration as well as the lower limit of at least one
further integration are also variable. The Heaviside function thus
automatically sorts out the various regions S ; a passage of the
separating plane through a corner of the cube corresponds to the passage
to another region. This is illustrated in Figure 3 for the case y =3 .
I1f the integrand in (25), apart from the factor H(%W ) of (38),
is regular everywhere in the hypercube and is invariant under simulta-
neous change of sign of all the uy (an even function), then the
integrals over the domains m)%f 0 are identical. We may therefore
drop the factor H(W ) and take instead half the integral over the
whole hypercube; from this point of view there is no separating plane

and the expansion (3) is the same in all regions. Thus if V 1is a

sum of terms of the form (6b) it follows from (30b), (31) and (45) that

for
"/"‘/_‘1‘2& &=O,|)2... (47)
)
the same analytic expressions for the R( { , m; r) are valid for all
~ ~ ~

r; this is in agreement with the fact that both the solid harmonics

L M i 2
)R YL (QAB s (FAE) and all positive integral powers of Thg have
universally valid expansion coefficients R 1’6’11.

The evenness of ihe integrand without analyticity throughout the

cube does not ensure the uniformity of the integral through all regions.
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Thus we obtain from (40) for

V=¢_"" , Gw)= ey,

AD (48a,b)
which is an even function even after multiplication by the /l)[ (“53
.

compatible with (31); yet this was the case for which the existence of
different regions was first established by Laplace. The identity of the
coefficients rf/rf-l with the double integral (25) using (23) (31) and
(48b) has already been established by Nozawa and Linderberg7.

Whenever one of the indices Zi vanishes, the integration over
the corresponding u, can be carried out explicitly. In particular
the expressions (21) and (22), and hence the form (10) given by Milleur

. et allo for the angle average <5: > y follow from a repeated integration

of (23)-(25) and (40) with all /i = 0 since in view of (31)

K” O... O> ’2/—)’ (49)
=

( 0..- 0 ;

the function Go( W) 1is thus identical with go( W) which would

precede 81 in the recurrence relations (22b).

The integral form of the radial coefficients R as opposed to the
series derived in I-III makes possible the expansion of non-analytic,
even discontinucus functions :F(EAB) in (2). A discontinuity in f
will produce a delta function in G(A ) in view of (38)-(42). 1If

‘f (rAB) diverges at Tyg = 0 , but it is known from other considera-
~

tions that a required integral over TaR is convergent, one can in-
L4
troduce a cut-off at Tyg = €> 0 and let € tend to zero later;
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this merely means repiacirg H{( W } by H(W-E€) in (38)-(42). An
interesting application of this arises in the expansion of the first

order irregular solid spherical harmomnic fri

- b iy Gy day, oo

if the formula (42) were applied uncritically, but this expression is

meaningless. On introducing a cut-off, we can put from (42) and (50)

G 6= i [€" S-&)]

(50c)

again the expression has no limit as € -» 0 , but we can add any even
function X (W) to Gl( MW ) without affecting the integral (25) as
the product of the (?2(}~\ is odd in view of (30b) and (3l). The

delta function é‘(’U ) is an even functiom of AY , thus we can put

G o) < fom €[S 869] = - §')

(504)

A

by L'Hopital's rule. Even more elaborate tricks are required in the
ion of the higher Y. ; = d

expansion of the higher -,  except for L =2, € cannot be made

to tend to zero, at least not for values of the r, corresponding to

the region So . Similariy a cut-off must be introduced in the expansion

for V = rABn where n < -1 ; after performing the integrations €
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may be reduced to zero for —17717‘3} but not in general for n< -3

(cf. Milleur et allo)o

Another possible operation on G(4J ) follows from (26)

V GGy c V5 G ") . (51)

Applying this to (48) we ocbtain

’SS( \)::—-’ Z—L' =--"". y
V=37, =V 6 o ) BN
For the angle average this leads to the expression (22) of Milleur,
Twerdochlib and Hirschfelderlo; for general li (23)-(25) integrate
to the formulas given by Tanabell and in III (40); as first pointed out
by Milleur et al. the latter formula should be divided by (-8), not
only for the angle average, but for all lf .

One aspect which awaits fuller investigation is the convergence of
the expression§, Two main types of convergence have to be considered:
(a) of the individual integrals (25) for all fixed sets roos
(b) of the sum (3) for all fixed sets (ri, gfi? ¥>i) , the radial

functions R being given (23)-(25) and (31).

With regard to (a) it is clear that the integrals converge whenever

G(W ) considered as a function of a single variable is every&here
integrable. Difficulties may arise through singularities at the origin
and through the introduction of generalized function; some practical
aspects of this have been descriked in the preceding paragraphs. The
point (b) has not been investigated at all, and I can only express my

personal opinion (or hope) that the expansion will converge in most
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practical cases.

Another point arising in this context is the possible interchange
of the order of performing the summations in (3) and the integrations
in (25). It is easily shown that a summation over all 4 m at

~ !/ ~N

fixed

r’
9 =0,

= 1 in wnich case the sum becomes

9', f , u may <iverge; ome oniy has to put y =2, L=0,
”~ LY

= u L
1 2 ?

j(,fa'“vz) ZN*?)@@D%) (53)

On the other hand when integrations over the angles with specific weight
factors are carried out, the resulting series at constant u may easily
converge; the advantage‘bf this approach is that the integrations over
the radii and the angles are thereby completely separate (which they

are anyway in the expansion (3)), but in addition the linearity of

g( W) of (24), (23} in rhe £, remains preserved; an application of

this will be outlired in the next section.

5. Application to two-center expansions and further research

The main applications of the theory developed in this paper are
likely to concern two-center expansions, corresponding to the case
V =3 (cf. Figure 1l). This raises the question whether any advan-

tage is gained by identifying the axis 0l 02 with the Z=~axis from the
start, i.e. by putting E}3 = 0 . Such an approach must be emphatically
rejected in the developmanat of the theory. The different radial co-

efficients R correspunding tv given '[1 and é; in (3) now depend

on my instead of g3 , but their number remains the same; for instance
in the isotropic case L = 0 :in (27) [ m, |= |m2l can take all

values between 0 and é; wheregs [ runs from \‘61' ¢ 2[ to

3
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‘[1 + ZZ in steps of 2, the number of different values being é& +1
in either case. On the other hand one of the sides of the differential
equations (5) is lost if '[:3 is kept fixed, and the expressions derived
for R are bound to be more complicated than those for fixed 'ZB .

This is borne out by the greater regularity of the coefficients in the
expansions for 1/r12 derived in III than in the formulation by Buehler
and Hirschfeldersg a generating function which these authors give in
their second paper is too cumbersome to be of practical use. Similarly
Nozawa, who fixes the direction of 0102 ,7 is obliged to define
generalized Bessel functions carrying two indices when expanding regular
solutions of the wave equation; in the analogous expansion given in II
for variable 9 3 the corresponding expressions are merely products of
Bessel functions which have to be added with the appropriate angular
integrals as coefficients.

Once the theory has been established there are fewer objections
to fixing 93 = 0 . If in the expansion of (27) the radial coefficients

corresponding to given values of / , m

1’ { m, and m, = 0 are

r "2 72 3
summed over all ég including those for which R vanishes in view of

the conditions (30b,c), the relevant factor becomes in view of (28)

and (34) [ ¢ f /
%(Z;’g) ol _,«'4( _;‘ ;) /@3(%\

, M\ o -m, e
= f% ([3*'/&3 (li @9)(’2 ®) /P‘,L ™) (Pésé’\?fa(“\ o v

(5%)

= fﬁF}_M@)) (P['M'é)\ (l)ex’”‘zé)\) J(us-:.v) dv,
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The complete radigl fector R is thus obtained as

[
'm - (* A U+t u, t1 U
«(/ [ 7‘> &) { )M’- JM}m,m.['G;(’t Rt k)

X /T)(u \ i(u \)? (u3\ [ ('usyflz'mfuax du, ol o£a3)<55>

with possibly an additicnal sign changez. From a theoretical point of
view it is very doubtful if such a formula could have been derived
without going through the procedure of section 3. The expression (5%)
itself is not too unwieldy especially for L = 0 ; its main drawback
is that the upper indices now appear inside the integral, instead of
merely through the constants ;ng in (28).

The integrals IT in the two=center expansion of an isotropic

0
interaction V involve three factors; in their normalized form (29)
they are most easily expressed in terms of Wigner 3j-symbols, on which
there exists an extensive literature regarding both theory and tabu-
lation (cf,13 or Refs,3’4’10516 of I1); an approach to the theory in
terms of unnormalized 3j-symbols, which are integers, was outlined in
II and will be further developed in a subsequent paper in this series.
Even ®f L # 0, the integrals are easily calculated from those with

three factors by means of (A3).

The evaluation of integrals over all positions of two particles

with interaction

[y (e g0 gy Vit

(56)
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can be turned, in view of (3), into a summation over K > My, / , m

2
of integrals over the radii =, and Ty s but involving the radial
A
coefficients R , the separation of origins ry = @ being kept fixed.

As these coefficients themselves gre expressed as triple integrals in
(23)-(25), the method would involve replacing the 6-fold integral (56)

by a multiple sum of 5=-dimensional integrals of the form

ffff/d" rde, G(F u i)

NS AAY AANANACRGRC

(57)

which appears a most uneconomic procedure. However, if the functions
X'(rl) and X:«(IZ) either are independent of [1 and /2 s
else can be broken up into terms which possess this independence, the

integrations over r. . and =1

1 2 could be done first for each point of

the cube in u-space, and the remaining three integrations could then
~N

be carried out numerically; such an apprcach would be all the more
practicable when the r-integrations can be performed analytically.
Fortunately the situation is more favorable in the most important

case V= 1/r In view of (48) the funcrion G( 4 ) in (57) is the

12 °

delta function 3 (a4 ) , and the number of integrations is thereby

at constant u
1 ~

implies a definite lirear dependence of r, oa 1 . However a further

effectively reduced by one, e.g. any variation of r

property of the delta function

’&’W\ = 8("*’ )/r’&l (58)
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reduces the number of ictegrations yet further. If the integration over
the radii has been carried out at & particular point (ul’ Uy, u3) in
y-space, the corresponding integral at (kul, kuz, ku3) is simply the
original one divided by lkl. (This argument cannot be applied if the
first integration is over one of the vy because of the finite limits.)
It is therefore sufficient to evaluate the r-integrals for points on

the surface of the 5-cubej and the volume integrals with weight factors

-

1‘ 7;é(u;)can be expressed as surface integrals with correspondingly
ad justed weights. These surface integrals would have to be evaluated
numerically; a Gaussian quadrature scheme could be set up in which the
points on the surface of the :;cube are tabulated for which the r-
integration is to be performed, together with their weights appropriate
to each triple ( /1, €2’ ('3) , or ( /1, 62’ m) if the approach of
(55) is used.

The most delicate part of such a scheme would be the integration
over the radii; it depends on the nature of the functions ;( (rl)
and x: (rz) whether these are best performed analytically or numeri-
cally. 1If they are Slater functions or products thereof, analytic
methods are appropriate. We may define

IAt /I‘MP(-M’_/“‘) ,,"’,zf J@“""'&“z“’““ﬁ v dv,

o

= (- 3/3:;)4 (- Mﬁ)"k 1 (59)




31

-
where , can be easily calculated

7- _ (60a)
= 0 a,)uz)u3>0

M}’-’(‘-Wg\ a/—"/uz ) - 1/‘;’3(1;[“5‘“ M/u, ) U Uy >0,

“uz‘/"u, Uy <0, (60b)
= Q/Y'O [‘AQ U3ﬂa2()
Alugl +/8u, “us 7o, 4g< 0 (60c)
= Dxpo C;'“ Q u3'//iuw/) U, U.>0
au&+ﬁ/d,/ 2,%3 /Li,<0. (60d)
14,15

The derivatives (59) can then be calculated by recurrence relations,
‘though care has to be taken to avoid instabilities in the derivatives
of (60b), which can be expressed in terms of confluent hypergeometric
functionsl4’3g

The situation is more involved if the functions /y1 and )(L
are not just products of powers and exponentials, especially if they
contain a factor arising out of the expansion of a Slater orbital about
, as in the Barnett-Coulson approach

. . 16,17 . .
to the evaluation of 3 and 4 center integrals™ ’ . An increment in

a center other than 0.d or O2

ry will correspond to various increments in r depending on the

2 >
ratio ul/u2 . Unless therefore X, and XL can be evaluated
rapidly for arbitrary values of their arguments, numerical quadrature
would be too time-consuming., It may be that in this case the expansion

of an orbital about one center in a complete oxrthonormal set about

another center would be more efficient; with the basis set of LBwdin-

10
Shull functions18 recently proposed by Smeyers ~ each integral would be
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a sum of terms (59), which could be evaluated on the basis of (60).
It appears however from the applications quoted by Smeyers that the
convergence is rather slow.

The foregoing discussion is of necessity rather sketchy as no
actual calculations have been carried out along these lines; in con-
sequence the writer has no idea how well the new approach would compare
with other methods. In view of the importance and the difficulty of
calculating 3 and 4 center integrals, no avenue should be left un-
explored, and the ideas have therefore been presented as far as they
have been thought out to date.

Two other directions for further research are mentioned in con-
clusion. One concerns the generalization of the expansion (3) to
vectors in an arbitrary number of dimensions. The form of the function
G depending on the projection of the vector f onto a fictitious
polar axis can be adapted to these cases without difficulty; the further
factors in the integral (25) and in the definition (38) of G would be
cosines in the plane and Gegeubauer functions in more than 3 dimensions
(cf. section 3.15 of Ref. 3).

An interesting prcblem in pure mathematics may be approached from
a new direction on the basis of the present research. The solutions
for R when V 1is a power were presented in III in terms of Appell
functions ¥, and here in terms of the integrals (25) where G is
still a power. This suggests the possibility of expressing F4 in
terms of 3~dimensional integrals; so far it has not been possible to

express this function in terms of simple single or double Euler integrals.
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Apgendix A, Some relevant properties of the Legendre functions and
their integrals.

m
The associated Legendre functions 7? satisfy the well-known

orthogonality condition

|
-l
m ~m ~ ( LY
= [~— + 4
,/Pe (M?M @du =" 4, G (A1)
From this relation and the completeness of the functions follows the

expansion for the delta function
00
m ! it ™ /
(g(u—u')r-e-) 02(24'/23 /'Z ORFICY (A2)

valid for arbitrary wm ; equation (34) represents the special case
m=0 . Similarly with the definitior for the integrals (28) and (Al)
and (A2), the expression (32) is an identity. The integrals (28) are
invariant under permucation of the columns, and the single integral
over u can always be turned into a double integral by the insertion
of the factor (A2). Carrying out both integrations and summing we
obtain the identity

7— éﬂ‘"' é% é;+|*'- él - G_)”“zz?z?2+},) ET ;A-ﬂ é;'/

—a m, - m ’mqﬁ.,. M, 7 2 0 m'...m7_m

1
(a3)

— &, -2,
X |

-0 On,on,1.” m, )

m = n4'+.‘.+7n7 .
1

For the last result we make use temporarily of the normalized harmonics
(lb) and their integrals (29). For products of three harmonics these

integrals are given in terms of the Wigner 3j-symbols
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T (,4/3) [HC»?/H)] M/XM/

—Y L™ o, om 41 m,m, my /(OO0 O . (44)

The Wigner symbols satisfy the orthogonality relation (cf.(3.7‘8) and

(4.6.3) of Reference 13)

/,/J\ ! 4, e’>= dpor

P MM TS ek

i 4 0)

M ml M'ml"'m
]

(45)

where 5 é(. I& é;):is unity provided the triangle conditions (30c)
are valid and zero otherwise (though in this case the sum (30b) may be
even or odd). Re-expressing - (1b) and (29) by their unnormalized

counterparts (la) and (28) we obtain from (A4) and (A5)

A 2\ ~ (4 ¢ ()

QM m-em M

it

(A6)

It is intended in a future publication to establish an exhaustive theory

—

of the integrals ‘LJI. by analytical methods only, so that no group-

theoretical arguments are required to derive results such as (A6).
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Appendix B, Errata to Parts I, II and III
Part I: J. Math. Phys. 5, 245 (1964).
Abstract: Delete "for n= -1 and n = -2",
Abstract: 1In the last line read "or of" for "of of".

(27a): The second line should begin

o

=l L gL L_ L L
X, [_2[ q%)g‘ 401.4'1)_.-

(36b): The first line should read
¢ 2 2\%
(-0 v A1)
) C+y
(/z)e'l ,f?

(49) : Read  (F4+20+1) ]! Lr(zﬁj‘mu

Part II : J. Math. Phys. 3, 252 (1964).
Line following (47) should begin:
"the value of L at constant N"
(57a): Read "r22” for "dr22” in last fraction ,
Part IIL: J. Math. Phys. 5, 260 (1964).

(40b): This should be multiplied by a factor: - to read:

€5 ! -\
Y AN M AL (24-n!
{’\7'0 (J,.., > ’ﬂ—(ﬁf\s“l).’( FZEY

o0 |

L

p. 266, 2nd line of § (a): read '"charge'" for 'change'.
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Text to Figures

Figure 1. Polar coordinates for two-center expansion.
The angles (P ; are not shown to avoid cluttering up

the diagram.

Figure 2. The various regions:
a. The one-center case.

b. The two-center case,

Figure 3. Position of the plane 4y = 0 in the u-cube.
a. ri> rj+rk,

b. lrl-rzl <r3(rl+r2 .
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